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Abstract— In this paper, we present certain results on the zero bounds and zero free regions for quaternionic polynomials by relaxing 

the condition of monotonicity on the coefficients of a polynomial and thereby obtain generalizations and refinements of many known 

results. 
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I. INTRODUCTION 

If  

j
n

j

j zazP 
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
0

)(

 is a polynomial of degree n. Then 

Enestrom-Kakya [6] proved the following result.  

Theorem A: If 

j
n

j

j zazP 



0

)(

  is a polynomial of 

degree n  such  that  
0... 011   aaaa nn , then 

 zP
 has all its zeros in 

1z
. Later on Joyall et al. [5] 

extended Theorem A by relaxing the condition of 

non-negativity proved the following result.  

Theorem B: If 
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j
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
0

)(

is a polynomial of degree  

n  such that  011 ... aaaa nn   , then 
 zP

  has 

all its zeros in  n

n

a
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z

00 


. 

 The above results were generalized by Shah [7] by 

proving the following more general form of Enestrom-Kakya 

Theorem.  

Theorem C: If  
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 is a polynomial of 

degree  n  such that for some positive integer
,p
 

011 ... aaaa pp   , then P(z) has all its zeros in 
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II. BACKGROUND 

Quaternions, discovered by the mathematician William 

Rowan Hamilton in the 19th century, extend the concept of 

complex numbers. While complex numbers consist of a real 

part and an imaginary part, quaternions incorporate three 

imaginary components, thus forming a four-dimensional 

number system. Quaternionic   polynomials are polynomials 

whose coefficients and variables belong to this quaternionic 

number system. These numbers are generally represented in 

the form  
kjiq  

 where  
R ,,,

 

and 
kji ,,

 are fundamental quarternion units satisfy the 

multiplication rules
1222  ijkkji

. The set of 

all quaternions is denoted by H  in honour of Sir 

Hamilton .Multiplication of quarternions is not commutative 

in general but H  is at least division ring and also forms a 

four dimensional vector space over R  with 
 kji ,,,1

 as a 

basis. Let 

  HqaqqppP l

n

l

l

n  


,,
0   denote the 

nth-degree polynomials with quarternionic variable 
Hq

 

and  
nlal 0,

 are either real or quarternion.   Carney et 

al. [1]   proved the extension of Enestrom-Kakya Theorem for 

quaternionic polynomials in the form of following results. 

Theorem D: All the zeros of the polynomial  nPp
 of 

degree n  with real coefficients such that 

0... 011   aaaa nn  lie in  
1q

. 

 Theorem E: If 

  l

n

l

l aqqp 



0  is a polynomial of 

degree n  with quaternionic coefficients and quaternionic 

variable where 
nlkjial  0,

 and 
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satisfying 

,...,... 011011    nnnn  

 
,...,... 011011    nnnn  

Then all the zeros of 
 qp

lie in   

  UUUU
a

q
n


1

, 

Where  

  nt tttU  00 . 

 In this paper, we   will   relax the condition of 

monotonicity on the extreme coefficients and thereby obtain 

the following results which in turn generalize many known 

results besides the above results. 

III. MAIN RESULTS 

Theorem 1:If  

  l

n

l

l aqqp 



0  is a polynomial of degree 

n  with quaternionic  coefficients and quaternionic variable   

where
nlkjial  0,

and satisfying 

,...,... 1111 ssrrssrr   

,...,... 1111 ssrrssrr     

nrs 0 , then all the zeros 
 qp

lie in 

  MNNNM
a

q r

n


1

 

Where rst tttN  0 , 

 



n

ri

iiiirM
1


, 

 



s

i

iiiisM
1



1 iii xxx
. 

Remark: If we take r = n then Theorem 1 reduces to the 

result due to Tripathi [9, Theorem 3.1]. 

Theorem 2: If 

  l

n

l

l aqqp 



0   is a polynomial of degree 

n  with quaternionic coefficients and quaternionic  variable 

nlkjial  0,
 such that for a integer r  

and a non-negative integer s ,  nrs 0 ,we have 

ssrr aaaa   11 ...
, then 

 qp
 does not vanish 

in 


















snsrr VaaaV

a
q

0
,1min

  

Where 





n

ri

irV
1


and   





s

i

isV
1


. 

Remark :  Applying Theorem 2 to the polynomials 
 qp

  

with real  coefficients ,i.e.,
0 

, we get The 

result due to shah et al. [8] and if  we  put nr   in Theorem 

2 , we get the result due to   Tripathi   [9 ,Theorem 3.7]. 

IV. LEMMAS 

To prove the results stated above, we need the following 

lemma due to Gentili and Stoppato [3].  

Lemma 1.  Let  

  l

n

l

l aqqf 



0 and 

  l

n

l

lbqqg 



0  be 

two quaternionic power series with radii of convergence 

greater than R.The regular product of  
 qf

 and 
 qg

 is 

defined as 

   l

n

l

l cqqgf 



0 , where 

tl

n

t

tl bac 




0 . 

Let 0q
< R, then  

   00  qgf
 if and only if  

  00 qf
or  

  00 qf
 implies 

     00

1



qfqqfg

. 

V. PROOF OF THE THEOREMS 

Proof of Theorem 1. Consider the polynomial  

    01 aaaqqf tt

t  
 and 

      n

n aqqfqqp 11 
. Therefore by Lemma 1,  

 
    01  qqp

 if and only if either  
  0qp

 or  

 
  0qp

 Implies 
    01

1



qqpqp

 .If  

  0qp
 , then 

1q
. Therefore, the only zeros of  

   qqp  1
 are 

1q
 and the zeros of  

 qp
. Thus for  

1q
, we get 

  



n

t

tt aaaqf
1

10

 

0000  
 

 



n

t

iiii

1


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 0000  
 

 



n

rt

iiii

1


 

 



r

st

iiii

1


 

 



s

t

iiii

1


 

 Now by using the hypothesis, we get for 
1q

  

 qf sr MTM  0000 
 

where 

       srsrsrsrT  

Since

 qf
q

f
q

fq
qq

n

q 111
max

1
max

1
max






















, therefore  










q
fqn 1

 has the same bound on 
1q

. 

Thus for 
1q

 

.
1

0000 sr

n MTM
q

fq 







 

Applying maximum modulus theorem [3] for quarternionic 

polynomials, it follows that for |
1q

  











q
fq n 1

sr MTM  0000 
. 

That is for | 
1q

  

 .11
0000 srn

MTM
qq

f 









 Replacing 
q

 by 
q

1

 , we get for 
1q

  

    n

sr qMTMqf  0000 

But  
      n

n aqqfqqp 11 
 

 .
1

qfqa
n

n 


 

Therefore we have for 
1q

  

   qqp  1

  srn MTMqa  0000 
 

This implies that 
    01  qqp

, i.e. 

    01  qqp
  if 

 .1
0000 sr

n

MTM
a

q  

 

Since the only zeros of  
   qqp  1

 are  
1q

 and 

the zeros of 
 qp

 . Therefore, 
  0qp

 for 

 .1
0000 sr

n

MTM
a

q  

 

Hence all the zeros of 
 qp

 lie in 

  MNNNM
a

q r

n


1

 
This proves Theorem 1. 

Proof of Theorem 2.  Define   the reciprocal polynomial  

  .
1

0

t

n

t

tnn aq
q

pqqW 












 

Let  
      0

11 aqqgqqW n
, where  

    .1

1

1

ntt

n

t

tn aaaqqg  




 Thus   for  

1q
, 

we get 

  n

n

t

tt aaaqg 




1

1

 
Now by using the hypothesis and continuing as in 

Theorem 1, it follows that for 
1q

 

    .
n

snsrr qVaaaVqg 
 

But  

      0

11 aqqgqqW n
 

 qgqa
n


1

0  

   n

snsrr qVaaaVqa  0 , 

If 

0a

VaaaV
q

snsrr 


, 

that is  
    01  qqW

 for

0a

VaaaV
q

snsrr 


. 

Hence all the zeros of  
   qqW  1

 whose modulus 
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greater than 1 lie in  

0a

VaaaV
q

snsrr 


. 

Therefore, all the zeros of  
 qW

 lie in  


















snsrr VaaaV

a
q

0
,1min

. 

Hence the polynomial does not vanish in 


















snsrr VaaaV

a
q

0
,1min

. 

That proves Theorem 2. 
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