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Abstract— In this paper, we present certain results on the zero bounds and zero free regions for quaternionic polynomials by relaxing 

the condition of monotonicity on the coefficients of a polynomial and thereby obtain generalizations and refinements of many known 

results. 
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I. INTRODUCTION 
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 is a polynomial of degree n. Then 

Enestrom-Kakya [6] proved the following result.  

Theorem A: If 
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  is a polynomial of 

degree n  such  that  
0... 011   aaaa nn , then 

 zP
 has all its zeros in 

1z
. Later on Joyall et al. [5] 

extended Theorem A by relaxing the condition of 

non-negativity proved the following result.  
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 The above results were generalized by Shah [7] by 

proving the following more general form of Enestrom-Kakya 

Theorem.  
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 is a polynomial of 
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II. BACKGROUND 

Quaternions, discovered by the mathematician William 

Rowan Hamilton in the 19th century, extend the concept of 

complex numbers. While complex numbers consist of a real 

part and an imaginary part, quaternions incorporate three 

imaginary components, thus forming a four-dimensional 

number system. Quaternionic   polynomials are polynomials 

whose coefficients and variables belong to this quaternionic 

number system. These numbers are generally represented in 

the form  
kjiq  

 where  
R ,,,

 

and 
kji ,,

 are fundamental quarternion units satisfy the 

multiplication rules
1222  ijkkji

. The set of 

all quaternions is denoted by H  in honour of Sir 

Hamilton .Multiplication of quarternions is not commutative 

in general but H  is at least division ring and also forms a 

four dimensional vector space over R  with 
 kji ,,,1

 as a 

basis. Let 

  HqaqqppP l

n

l

l

n  


,,
0   denote the 

nth-degree polynomials with quarternionic variable 
Hq

 

and  
nlal 0,

 are either real or quarternion.   Carney et 

al. [1]   proved the extension of Enestrom-Kakya Theorem for 

quaternionic polynomials in the form of following results. 

Theorem D: All the zeros of the polynomial  nPp
 of 

degree n  with real coefficients such that 

0... 011   aaaa nn  lie in  
1q

. 

 Theorem E: If 

  l

n

l

l aqqp 



0  is a polynomial of 

degree n  with quaternionic coefficients and quaternionic 

variable where 
nlkjial  0,

 and 
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satisfying 

,...,... 011011    nnnn  

 
,...,... 011011    nnnn  

Then all the zeros of 
 qp

lie in   

  UUUU
a

q
n
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, 

Where  

  nt tttU  00 . 

 In this paper, we   will   relax the condition of 

monotonicity on the extreme coefficients and thereby obtain 

the following results which in turn generalize many known 

results besides the above results. 

III. MAIN RESULTS 

Theorem 1:If  

  l
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0  is a polynomial of degree 

n  with quaternionic  coefficients and quaternionic variable   

where
nlkjial  0,

and satisfying 

,...,... 1111 ssrrssrr   

,...,... 1111 ssrrssrr     

nrs 0 , then all the zeros 
 qp

lie in 
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Remark: If we take r = n then Theorem 1 reduces to the 

result due to Tripathi [9, Theorem 3.1]. 

Theorem 2: If 
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0   is a polynomial of degree 

n  with quaternionic coefficients and quaternionic  variable 

nlkjial  0,
 such that for a integer r  

and a non-negative integer s ,  nrs 0 ,we have 

ssrr aaaa   11 ...
, then 

 qp
 does not vanish 

in 
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Remark :  Applying Theorem 2 to the polynomials 
 qp

  

with real  coefficients ,i.e.,
0 

, we get The 

result due to shah et al. [8] and if  we  put nr   in Theorem 

2 , we get the result due to   Tripathi   [9 ,Theorem 3.7]. 

IV. LEMMAS 

To prove the results stated above, we need the following 

lemma due to Gentili and Stoppato [3].  

Lemma 1.  Let  
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0 and 

  l

n

l
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0  be 

two quaternionic power series with radii of convergence 

greater than R.The regular product of  
 qf

 and 
 qg

 is 

defined as 
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0 , where 
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0 . 

Let 0q
< R, then  

   00  qgf
 if and only if  

  00 qf
or  

  00 qf
 implies 

     00

1



qfqqfg

. 

V. PROOF OF THE THEOREMS 

Proof of Theorem 1. Consider the polynomial  

    01 aaaqqf tt

t  
 and 
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. Therefore by Lemma 1,  
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 .If  
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. Therefore, the only zeros of  

   qqp  1
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 and the zeros of  
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. Thus for  
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, we get 

  



n

t

tt aaaqf
1

10

 

0000  
 

 



n

t

iiii

1


 



    ISSN (Online) 2394-2320 

International Journal of Engineering Research in Computer Science and Engineering  

(IJERCSE) 

 Volume 11 Issue 5 May 2024 

 

60 

 0000  
 

 



n

rt

iiii

1


 

 



r

st

iiii

1


 

 



s

t

iiii

1


 

 Now by using the hypothesis, we get for 
1q
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where 
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, therefore  










q
fqn 1

 has the same bound on 
1q

. 

Thus for 
1q
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Applying maximum modulus theorem [3] for quarternionic 

polynomials, it follows that for |
1q

  











q
fq n 1

sr MTM  0000 
. 

That is for | 
1q
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 Replacing 
q

 by 
q

1

 , we get for 
1q
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But  
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 .
1
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Therefore we have for 
1q

  

   qqp  1

  srn MTMqa  0000 
 

This implies that 
    01  qqp

, i.e. 

    01  qqp
  if 

 .1
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Since the only zeros of  
   qqp  1

 are  
1q

 and 

the zeros of 
 qp

 . Therefore, 
  0qp

 for 

 .1
0000 sr
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Hence all the zeros of 
 qp

 lie in 

  MNNNM
a

q r

n
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This proves Theorem 1. 

Proof of Theorem 2.  Define   the reciprocal polynomial  
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Now by using the hypothesis and continuing as in 

Theorem 1, it follows that for 
1q
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that is  
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Hence all the zeros of  
   qqW  1

 whose modulus 
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greater than 1 lie in  

0a

VaaaV
q
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. 

Therefore, all the zeros of  
 qW

 lie in  
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Hence the polynomial does not vanish in 


















snsrr VaaaV

a
q

0
,1min
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That proves Theorem 2. 
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